激情九九,六月婷婷七月丁香,天天五月天丁香婷婷深爱综合,国产色一区,国产一区二区三区免费在线观看,91最新网站

南京航空航天大學研發連續纖維增強熱塑性樹脂3D打印技術

來源:中國塑料機械網

點擊:1926

A+ A-

所屬頻道:新聞中心

關鍵詞:3D打印 纖維增強 熱塑性樹脂

    在波音公司宣布將600多件3D打印部件用于波音的Starliner太空出租車之時,我們不由得感嘆于塑料代替輕質金屬合金將成為交通工具領域的一大趨勢。國內在開發塑料代替輕質合金這一技術方向上是否與國際同步,甚至有自己更加獨到的研究?本期,小編和大家一起來領略南京航空航天大學在連續纖維增強熱塑性樹脂打印技術的創新突破。

    國內研發連續纖維增強熱塑性樹脂3D打印技術

    熔融沉積成型(FDM)技術憑借其較低的成本和較優異的可實現性,近年來取得了很大的市場占有率,特別是出現的小型化的桌面式FDM三維打印機,使得個體用戶也可以自行設計并制造出復雜且具有一定使用功能的零件。但該工藝使用可加熱融化的熱塑性樹脂耗材為成型材料,材料本身不具有連續性,層內分子團間距較大,且逐層鋪疊的工藝特點也造成了較差的層間結合力,這些特點都導致零件脆性大,沖擊強度低,易變形,承載性能差。

    國際和國內通常在零件的設計過程中采用結構拓撲優化的方式來優化力學性能,亦或是在熱塑性基材中加入顆粒,短切纖維等增強體,終究不能根本上提高熔融沉積工藝所成型構件的力學性能。特別是針對航空航天領域內的復雜構件,輕量化和高強度的要求日益嚴苛,雖然熔融沉積等增材制造工藝可以大幅度的節省原材料,降低零件制造的難度,但其制品力學性能較差也是限制其在行業內發展的主要原因。

    市場上的連續纖維增強樹脂基復合材料的3D打印方法存在以下主要問題:

    -各類纖維在出廠時,其表面活性基團均只適應于與熱固性樹脂的浸潤過程。在使用簡單的措施將未處理的纖維與熔融熱塑性樹脂共混時,難以使纖維與樹脂充分浸潤,這導致構件的纖維-樹脂界面較差。

    -大絲束纖維呈展平帶狀,現有3D打印方法難以使用大絲束纖維,且小絲束纖維在成型過程中成型速度慢,成型后的表面質量、纖維樹脂體積分數、纖維樹脂分布情況、層間結合力等性能指標難以控制。

    -現有的方法在打印過程中,由于纖維的局部分叉、斷裂,容易造成纖維在腔體中堆積、堵塞,對成型過程造成影響,同時,成型軌跡中纖維呈松散、無規律的分布狀態,使得構件的承載性能受到影響。

    南京航空航天大學針對現有的熱塑性樹脂基復合材料3D打印成形時所使用的連接纖維尺寸較小,且不能對連接纖維實現有效浸漬而造成成型速度低、構件尺寸受限較大、成型件綜合性能低的問題,發明了連續纖維增強熱塑性樹脂基復合材料的3D打印方法。適用于尺寸較大的纖維絲束,該打印技術成型速度快,表面質量提高,同時纖維與熱塑性基體間的界面結合性能好,構件纖維含量高,纖維密實度高,并且提高了打印構件的力學。

    南京航空航天大學還研發出連續纖維增強熱塑性樹脂基復合材料旋轉共混3D打印頭,其特征在于:擠出頭連接于熔融腔也可繞中軸旋轉,且旋轉方向與熔融腔相反;熔融腔與擠出頭內側均有攪拌齒環,纖維束和熔融熱塑性樹脂受到兩級反向旋轉的螺旋齒環攪拌作用下均勻共混,且共混體以螺旋狀密實纏緊成圓柱絲束,樹脂沿纖維取向均勻分布;擠出頭擠出材料至成型區域并固化成纖維增強樹脂基復合材料。

    南京航空航天大學的技術對當前熱塑性復合材料成型技術是一種突破,南京航空航天大學采用兩級旋轉腔體對纖維和樹脂的共混體進行攪拌和纏繞,適用于較大尺寸的纖維絲束,優化了打印頭對纖維原有狀態的適應性,在相同的打印速度下,提高了打印效率,改善了構件的表面質量;攪拌共混的作用下,纖維與樹脂間的浸潤充分,共混體中的纖維呈緊密螺旋纏繞狀,提高了增強體的承載能力,樹脂在纖維中各處分布均勻,改善了構件的層間和界面結合性能,提高了打印構件的力學性能;擠出頭的旋轉作用可使共混體在擠出后,纖維與樹脂的分布均勻,纖維體積含量高。

    當前針對連續纖維增強的熱塑性復合材料成型FDM打印技術領域,活躍的企業和研究機構包括美國MarkForged,日本大學、東京工業大學,西安交通大學等。3D打印隨著南京航空航天大學將這一技術水平推向新的高度,小編認為FDM技術用于連續纖維增強的熱塑性復合材料打印技術進一步走向工業級應用。

    南京航空航天大學的突破性在于實現了較高力學性能連續纖維增強熱塑性基體復合材料構件的3D打印,且成型效率高,表面質量好,可適用于對性能要求較高的航空航天復雜構件的成型過程。

    從金屬到高性能材料的轉換目前是航空航天市場的一個既定趨勢,小編認為復合塑料成為追求設計自由度、制造便利性和輕質以超越傳統鋁材的方案。


    (審核編輯: 智匯小蟹)

    聲明:除特別說明之外,新聞內容及圖片均來自網絡及各大主流媒體。版權歸原作者所有。如認為內容侵權,請聯系我們刪除。

    主站蜘蛛池模板: 欧美精品aaa久久久影院 | 免费成人黄色网址 | 国产成人精视频在线观看免费 | 久久99热精品免费观看欧美 | 四虎影院欧美 | 奇米影视第 | 97色在线视频观看香蕉 | 国产99视频免费精品是看6 | 日韩福利在线 | 久国产 | 日本高清色惰www在线视频 | 四虎国产精品免费五月天 | 欧美日韩亚洲高清老妇性 | 欧美aⅴ| 午夜丁香婷婷 | 久久免费视频播放 | 黄网站色成年片在线观看 | 久草免费资源视频 | 欧美精品第1页www劲爆 | 色播久久 | 99久久99 | 能在线观看的一区二区三区 | 国产精选一区 | 娼年中文字幕 | 欧美一区二区在线观看免费网站 | 国产精品一区二区av | 欧美成人免费看片一区 | 日韩精品小视频 | 国产色婷婷视频在线观看 | 国产在线视频欧美亚综合 | 激情综合五月天丁香婷婷 | 99久久国产综合精品2020 | 欧美亚洲国产视频 | 日本高清三区 | 不卡视频一区二区三区 | 欧美成人另类69 | 奇米影音第四色 | 国产精品拍拍 | 东京干男人 | 欧美综合激情 | 国产免费网址 |